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ABSTRACT

The practicality of the First-Order-Perturbation~Iteration-
Method (FOPiH) is appraised. After the first iteration, the
expectation value of the energy is given by a non-analytic function
of the perturbation parameter ;\ . The asymptotic expansion of
this function gives the energy accurately up to O 7L8). The
convergence of the asymptotic expansions is discussed. Two
examples are considered: a perturbed ground state hydrogen atom,

and a perturbed ground state linear harmonic oscillator.
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The First-Order-Perturbation-Iteration-Method (FOPIM) for

solving time-independent quantum mechanical problemsl’

requires -
careful scrutiny. After the n-th iteration the expectation value
of the energy is given by a complicated non-analytic¢ function of
the perturbation parameter A which may be expanded in an asymptotic
series in A accurate up to terms of the order of A raised to
the 2n+1 power. Thus, FOPIM requires.the solution of fewer
differential equations to obtain high precision than would be
required by other procedures. However, the method is not easy to
apply. The integrations and the differential equations involved
soon become intractable, and numerical techniques are required for
further progress. The difficulties are illustrated by two ;ather
trivial examples: (1). A ground state hydrogen atom pertufbed by
a small additional charge at the nucleus, and (2). A ground state
linear harmonic oscillator pérturbed by an additional qﬁadratic
potential. Before proceeding with the examples, we briefly recall

the relevant theory and also consider the question of the convergence

of the iterated perturbation series.

II. THEORY

We start with the usual Rayleigh-Schrldinger perturbation
theory for non-degenerate states. Let ho be the unperturbed
Hamiltonian which has €, and ‘%, as its eigenvalue and normalized
eigenfunction for the state under consideration. The perturbed
Hamiltonian is

B = h + _Xvo (D)




We seek the perturbed energy E( A ) and the perturbed eigenfunction

‘P(%) . If E and ‘W are analytical functions of A ,
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The first three corrections to the energy can be expressed2 in

€Y’
terms of v_, \yo , and \-Yo ,
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Here \-Po(l) satisfies the equation
(1) t
(ho- &) %"+ (o= )%, =0 o

In the usual situation where hj consists of a kinetic energy

operator T plus a potential energy function u, s it is convenient
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1
to let *4/0( ) = Fo \+’o where Fo is a function of the coordinates.

Then Eq. (7) reduces to

[Lre] W, + (v,- €y =0 @®

This is a differential equation for Fo which can, in principle,
be solved by quadrature in one-dimensional or separable multi-
dimensional problems. Thus, there is a fairly clear-cut way'of
I ¢)) 4
deriving **L and the energy up to terms of the order of A .
The basic idea of FOPIM is to iterate the perturbation procedure

starting with the improved unperturbed eigenfunction

Y = NW+A2¥P )= N(r+xE) ¥ O

where N 1is the normalization factor

N o= | 1+ alh, 7 + <]
)
+ h?. < \Po(”’ \1[/0(‘ >

Actually, Eq. (8) only determines F0 up to an additive
constant Co . If \+ﬂ)(1)'is the (asymptotically) correct first-
) ’
order function for which <\}'°,‘P°(' = 0 and \Po(l) differs

(1) ce . :
from \4/0 by qé 5];’that is, in a different choice of Co R

then one may write for the first iterated wave function
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Thus \V{ differs from \V'l by terms of order A2 . This is

ﬁot equivalent to altering a multiplicative normalization constant.
The energy expectation value 5: = < '*H s H \F' > is not
affected by the choice of Co up to terms of O ( 7\4) . Furthermore,
if \Vz is the normalized function obtained after the first
iteration, the energy 62 = <\’$ ') H \P2> is not affected
by the choice of Co up to terms of 0Of As). Thus, for our
purposes, the choice of Co is immaterial and may be made (as in

our first example) to simplify the calculations. It is easy to

verify that hlwl = €1 ‘Vl where

h o= h s AVe+rXelf
{ o

(11)
'+ F,

and

€, (x) = €, + ae"

(12)



Thus the perturbed Hamiltonian can be written in the form

H = h, +A v _ (13)

where

) <
V. (vo-€P)f _ (H-€)¥

The ?\zvl( A ) now plays the role of a perturbation. Corresponding to

Egqs. (2) and (3), we have the expansions

E() =€+ X €0y + e D) + a° e,“”(;\)
- e e (2a)

P R)= W+ A0+ 3a)

The new first-order wave function \1/1(1) ( \) may be expressed in

the form ‘-[-’1(1) (A) = F (A) ‘-Pl(). ) where F1(7\) is a

function satisfying the equation

[T, F () ]¥0) + (M) — €9m) ¥y = 0

(8a)



The El(l)( 2D, 61(2)( A) , and 61(3) ( A) are given by

6‘“)(70 =< Y) 5\/1 ‘H)

(4a)
E¢(25(>‘> = <%, v, -—Ef')> \Pa(‘) ? (5a)
ey = < v (- Ry

- 6,&)[< \HU)) P> r <, 7\%05]

Eq. (8a) only determines the function Fl( 7\) to within an additive
constant Cl . However, Eqs. (5a) apd (6a) are written in such a
form that the values of 61(?) ?nd 'fl(.” are independent of the
value of C1 . ‘

If the expansion of the energy, Eq.(2a), is terminated after the
third-order term K6 61(3) (A), then E( A) should be accurate
up to terms of the order of 7\8. This is the same accuracy as could
be obtained from the usual Rayleigh-Schrgdinger perturbation theory
with the expansion of the wave function, Eq.(3), truncated after the .
third order term 7\3 %(3) . The advantage of FOPIM is that to
obtain this degree of accuracy it is only necessary to solve two

differential equations for \Po(l) and for \Pl(l)( A ) instead of

the three differential equations for \'Po(l) B \1’0(2) , and \Vo(3)




In order to obtain higher accuracy, the FOPIM procedure can be

repeated as often as required.

111. CONVERGENCE.
The theorems3 of Rellich, Kato, Titchmarsh, and others enables
one to discuss the convergence of the Rayleigh«Schrddinger energy
geries Eq.(2) in terms of the mathematical properties of h, and v .
The convergence of the FOPIM energy series Eq.(2a) is more difficult
51(1)

to assess since h;, and v, , as well as the El s

are functions of A . An additional difficulty arises from

)2 vl( A ) not being a regular perturbation in the region of
configuration space for which '7«,1"0‘ > 1. 1In this region, the
Taylor series expansion in powers of A does not converge for the
faceor (1 + 3\1"0)‘1 which occurs in v, ( A ). No matter how small
the value of N, there will always be such a region unless F_
is a bounded function (which it seldom is). Very little is known
about the convergence of a perturbation series having such complica-
tiona; However, intuitively, one expects that a given number of
FOPIM energy terms should give a far better energy than the same
~umber of Rayleigh-Schrodinger energy. terms.

1f tho El(j) 's are analytic functions of A in some
neighborhood of A= 0 (i.e. if they have convergent Taylor series
for ]JAl less than some fixed Ao ), it is possible to compare
the FOPIM series (2a) with the Rayleigh-SchrSdinger series (2) as
expansions in powers of A . From Eq.(12), it is clear that &,

is analytic in A . PFrom Eqs. (4a), (9), and (14) we see that E{l)
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i1s also analytic since it has the form (ao + a, A )/(bo + b17t+ b 2.2).

2

The behavior of €1(2) and 61(3) is different. Generally, as the-

following argument shows, we cannot expect them to be analytic in

any neighborhood of A = 0, no matter how small the value of A .
Eqs.(5a) and (6a) express 61(2) and €1(3) as integrals

involving \.Vl(l) = F \yl . The function F, 1is found by

solving Eq.(8a). In a simple one-dimensional case with \-)/1 assumed

real, T = - —;- d2/dx2 and F1 is the integral of

X

F -2 - (l)) 2

= L= 2Y 5 (v,-€0) ¥ ™ dx (15)
X —oo

Consideration of the factors of (1 + zFo) occurring in Wl

and vy indicate that dFI/dx has terms involving (1 + AFO)-2

and (1 + ZFO)-1 , and thus F. involves (1 + 7\F0)-1 and

1
log l 1+ AFOI . The logarithm is unpleasant as it cannot
cancel with any of the factors of (1 + AFO) in the numerators in

the integrals of Eqs. (5a) and (6a). These integratioms for €1(2)

and 61(3) are taken over all configuration space including the
region 'AFo\f > 1 in which the Taylor series for log \1 + ?\Fo\
in powers of A does not converge. It follows that 61(2) and
61(3) themselves do not have convergent Taylor series in powers
of A in any neighborhood of A =0 if F1 , and hence \Vl,
contains log I 1+ kFo‘ . One would still expect ,61(2) and
51(3) to have asymptotic expansions in ascending powers of A,

since the smaller the value of A, the less significant is the

troublesome region where \ AFO‘ > 1 . But these asymptotic




expansions are not‘conv‘ergent for any value of A .

Thus, it is only in an asymptotic sense that one should expect
~ to compare three or more terms in the FOPIM series Eq.(2a) with the
Rayleigh-Schrodinger series Eq.(2). In that semse, n terms of
Eq.-(éa) should agree with 2n terms of Ec‘j;(2). This is evident
beéause of the powers of 7\2 (rather than A ) which multiply the
terms in (2a). ' Experience with asymptotic perturbation series has
shown that frequently only three or four terms are relevant before
the series must be corrected and terminated. On this account, the
assertions about agreement of the two series (2) and (2a) through
high powers of A must be tentative and questionable.

" . Comparison of the two series, Eqs.(3) and ‘(3a), for the
»perturbed eigenfunction ‘P( 7\ ) is sometimes possible provided
that the norms of the two series are adjusted to be equal through
the power of A under consideration. With this proviso, it is
evident that, for example, ""1( A)+ 12 \Pl(l) ( A ) agrees
with \Po + 7\\}}0(1) + 12""0(2) + A3 "PO(B) whenever \Plu)(h)

is expandable in ascending powers of A, that is when 'AFO‘ <1.
IV. EXAMPLE: THE PERTURBED HYDROGEN ATOM.

A ground-state hydrogen atom perturbed by the addition of a
charge —Ae at the nucleus is a simple example which can be used
to test our FOPIM. This example has previously been used by
Wigner4, Trees,s'and Dalgarno6 to test perturbation theories. - In

atomic units; the exact solutions are
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ECA) = % - 202 and F(R) = wEQ - a)¥2 AT

(16)
We start with the umperturbed wave function
Yo T exp(- 1) (17)
corresponding to
\ h = -%Vz - r:-1 and € = - % (18)
T o o
The perturbation potential and first order energy are
= -1 n _
v, = T and €0 = 1 o (19)
It is easy to solve Eq.(8) for F0 giving
F,o=r and \PL(I) = 1T.% rexp( ~r ) (20)
Here the constant of integration has been adjusted sa as to
simplify the FOPIM calculations rather than to make \+g(1)
orthogonal to qi . From Eqs.(5) and (6) we find that
€@ - .y aa € P (21)

o] [¢]

Indeed, as Dalgarno6 points out, all of the subsequent E;fj)'s

are zero so that the first three terms of the Rayleigh-Schrd8dinger




energy series Eq. (2) suffice to give the exact energy of the
perturbed system, Eq.(16). This feature of the example is
fortunate.

In accordance with Eq. (9), the first-iterated FOPIM

normalized "unperturbed" wave function is

- - % -
W (a) = R (e 3amat) T (1ear)e T 22)

We note that \Vl( A ) agrees with the exact wave function ‘P( A)

through the first-order in A . From Eqs. (12) and (14),

€A =-5+x and v, = T‘—;—:-;? 23
Using Eq. (4a), it follows that

5.0)(7*) = ‘%(‘*30(‘*37‘4’332)—’ (24)
when | A< (7/12)% % 0.764, the expansion of Eq. (24) in

powers of A 1is convergent giving

", 5 ,2_ 9 .3 ¢, ..
e' ()): —-—-li—'f‘——i-a. %) e QA + (25)

Solution of Eq. (Ba) yields

.)\,_(’_1_37\,,_37‘2)}"‘ — q)\r+<b~2a) Iog,[!*H\Y"

+(b—q§(:+>\r)“‘+ C,

(26)
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Here C1 is an arbitrary constant and

Q=l+—§%+%a27 b=1+3X422% (o)

Setting \Pl(l) = F, \-Vl in Eq. (5a) , we find after some

tedious but straightforward integration,

6(2)(7\) . (1) ;,rLoA+G7A"+12QA3+:{7_x:‘ i

| T A (1+2a +3NH? ' ’

‘ 1l .51

22 H R

+ (+32 } ‘l—3h1"33"')

2. K4 453
ta-x*

| | -

(28)
Here oQ
f - -2y
T (») -—f (loglt-l-?vr'!)e dr
o
| - 25 ¥ @9
=4 e EC(2/2)
® x
in terms of the exponential integral Ei¥*(t) = J; (e "/x) dx .
If ‘A 1is negative so that the integrand of I( A ) has a
singularity at the point r = - 1/ A , then we must use the

Cauchy principle value of Ei*(2/A ). The asymptotic expansion

pf I( A) 1in ascending powers of A is
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. Expanding Eq. (28) with the use of Eq. (30), we obtain the

asymptotic expansion

: 4 (2 3 48 52T -
N -—FrFA-AT (31)
Thus, from Eqs. (23), (25), and (31), it follows that
e|+7\ € t+ATE =~ (32)

This illustrates the asmrtotic agreement of the first three terms
of the FOPIM series (2a) with the first six terms of the Rayleigh-
Schrddinger series (2). Using Eq. (6a), we could eyaluate 51(3)(1)
but the integrations would be very lengthy. We should get Ia result
similar to (but more complicated than) that for 61(2)( A) and no
new features would emerge. We would expect to find

e, +2 €+ e €® = -4 (1-2)"+ 0(xY)
| | - (33)

The unnormalized first-order corrected first-iterated
eigenfunction is "Pl + 7\2 ‘-}’1(1) = (1+ 7\2 Fl) \{/1

Here \Pl is given by Eq. (22) and F, is given by Eq. (26).

1
When !7\r ' <1, the logarithm terms may be expanded so that




Yy PN = Ke'T“?C“f%(I—H)-F(I F+3IN[ (1 +AT)
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I+ _7_‘3‘5’C_7‘(|+3A+27\z)

O - R B

|

(34)

2 .
Here K = (1 + 3A+ 37\)1 . If C1 is chosen so as to

make the asymptotic expansion of \’/1(1) orthogonal to ‘Pl R

then the asymptotic expansion of \Pl + q}l(l) is proportional to

2 3.3

Thus the agreement between the two series (3) and (3a) is also
asymptotic, |

"In this example it is evident from the complicated nature of
Fl thatr a further iteration based on the perturbation
?\_A(Vl - 61(1) ) F, (L + A2 Fl)-1 would be impractical.




V. EXAMPLE: THE PERTURBED, LINEAR HARMONIC OSCILLATOR.

Another simple example is the linear harmonic oscillator 1n its
ground state, perturbed by addition of A to the force constant.

Using atomic units, and taking the unperturbed force constant to be

unity,
z P U2
ho = =3 %—;(—5_ + X (36)
Vo = & X*
37)
- Ve
Y = “exp (-4 x%)
e, =% (38)

The exact energy and wave function of the perturbed system are

3

: 1 :
E = (1+2)* |

l | a2 A
= '5_"*‘&.'7‘"7’67‘ +332 512

21 o6y 33 7. 429 % ... (39
~ 5o tA T osser v )

. 2 i
=¥ [1+al-X)e2Zzr iz 352 wo)

3 35. ——S—x—z-: ’}—xf-—lt seos f
T2 loz2Y 512 256 334 +

15




In contrast to the perturbed hydrogen example, let us normalize
}
\-Yo(l) so as to be orthogonal to W, ; that is < V’;.)\Po>‘_—‘v 0.
Subject to this condition, solution of Eq. (8) yields

e .12
E"s i X (41)

or

VW= (B-EDY,

o

(42)
whence
(M _ |
e’ =4
(2)
€, :-7‘-‘; ‘ (43)
(3)
e - '-‘L_'
° 32
Now, the FOPIM equation is ’h.\l"' = e' \'H , with
* .
h, = ~kd L X+ 3 (7 =) |
. AT [+ (%5 - %) (44)
-4 2
- 717‘)/2[+- —L~-l<—-] (45)
\H = (l""*gi" l 2(8 ‘-l-) Yo
2.+ )\3
- Ll Ay e 32 (46)
et T2 T + | + A
32




The new perturbation is

Py = 2lm X4
| 3 (5 - %)

- (47)
The first integration of Eq. (8a) gives
z d =
a (48)
YA s 3 e,
with
X 2
)1 —
) ytre Ty
(24
2 -4 s
L’;_”_‘:').:__ - -Xzi n- )t Cn J)xz(“'J)‘H
(49)
Fortunately the a_ () are such that I, = L a cr‘f'(x)
does not appear in Eq. (48). Otherwise x z[ e ‘3 d‘j di
and related transcendentals would occur in Fl .
Solution of Eq. (8a) yields

W+ )F = A (l-t—M-I,Y'+Bx"~+ Dlsglt1+aE | +C, o)

with p
A..._.l_..':':"z’*,.)-s___&_
- 4 32 32 512
B=-% —Im o
2
' -
B =-1 -2 -
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The constant C1 is chosen so as to make the FOPIM wave
function in asymptotic agreement with Eq. (40) through third order;
that is;, by the condition (&l{,\-}{“)>=o, Here and in evaluation of
the energies Gfa’\and ef3), one encounters integréls which lead to
transcendental functions of the perturbation parameter A . The

integrals are of three types:

T,y = | e x™(1+a% )" dx

i

I, (v

).ooe_xzxzn Iog ‘ '+7\\:;“ dx (52)

— oo

I.,,,(Vl) = Swe"xzxz“ {fog | H-;‘E,I}zax

: -0
In order to express the definite integrals as power series in A,

one must ‘expand the integrands by use of the expansions
|
2 =2 ]
(+2EY = | —2aF + A*E* -2 E%
and ‘ (53)

‘ z v 2
log | 1+aF,| = A =X+ 5A%E -

b
which converge for A% F;2< }, or Xq-'xz"'# < -;—\g . The
Gaussian weight factor assures correct values for the definite

integrals in the limit of small perturbation.

18



Thus -
= 3 q .3, 47 §5 4 _ 343 5
C, AtgpA + 7(,3* 12298 122,770’\
28 .6, ... (5%)
441,5:03 oo

_ ' 2 -1 N -
- (1+53) (- rs) 7
- (55)
ez — g+ )ozt{-}'+ oagu Nt Foge
(ﬂ - e lbl qs +"¢
et = ‘3le+ 327&31

The wave function obtained by the FOPIM procedure is

=[] eatea 0y HaRiemR)
(56)

Expansion of the logarithm gives
() "P( 2) X3 \V(B) ‘P O O(As‘)
\P =\ + AW+ X (57)

where

<
WIC (- _.7_+—35- +r )¢

s _ 3x° _ )
Wts) 502'4-— s12 256 ~38t+ *

)\y (58)

1
X - 3072
\,/OW) - (_, 5 T 535"
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Thus \,/2 is in asymptotic agreement with Y through third order.

Now, the approximate energy for the original perturbed system is
£, =< Y., it Y, >

4- 6'(2)+A6 E.(a)
1+ )\4 <\H(l)’ \Hm>

e‘

Qoo ot a_sat, 1t
2=t~ 16 v 33 " 256 ¢

337

1

-+

1

il

5|2 204% 59
g 59
3 332 22,T95A° o ...
4096 ,o4%,576

This agrees with Eq. (39) through seventh order but the eighth order

term is an upper bound to the correct value.
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